From Architectural to Behavioural

Specification of Services

A niversity o . L .
& Leicetsytér Laura Bocchi (bocchi@mes.le.ac.uk), José Luiz Fiadeiro
10

SUBPREDS
) 93 &

Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi

FESCA 2009

mailto:bocchi@mcs.le.ac.uk
mailto:bocchi@mcs.le.ac.uk

Agenda

Background: SENSORIA, SRML, COWS
The aim

The architecture of the implementation
An example

Conclusion/ future work

Software engineering for SOC

Software Engineering for Service-Oriented Overlay Computers

http://www.sensoria-ist.eu/

an IST-FET Integrated Project Sept05-Aug09

The aim is to develop a novel approach to the engineering of software systems for service-
oriented overlay computers where foundational theories, techniques and methods are fully
integrated in a pragmatic software engineering approach

SOC vs CBD: our view

There is no “system” a-priori but an evolving configuration

Services add a layer of abstraction over a component
infrastructure

ﬂ Model-driven
Development
The different languages and formalisms developed in
SENSORIA represent each a number of aspects of SOC

. . . Deployment
from different perspectives: none of them aims to be

“complete” G~ ~B~
= B=] 2=
Legacy System| | Giohal Computer Global Computer

http://www.sensoria-ist.eu
http://www.sensoria-ist.eu

SRML COWS

e SRML: architectural e COWS: behavioural (lower level of abstraction)
e SRML is declarative: COWS its primitives explicitly model

it supports under-specification orchestration

it abstracting from how the middleware the functionalities provided by the middleware
provides its functionalities (e.g., publication, discovery, correlation)

SRML (overview)
U—w—=

REPAIRSERVICE LI T L L I O

Module: a number of (different types of) nodes
pairwise connected by edges

CR: cO % OR: %; oT I Each node 7 has a signature sign(n)

Customer Orchestrator TowTruck
A
Y Each node has a (different type of) behavioural

cji interface. All behavioural interfaces are defined in

LK. terms of events
LocalAgenda

e SRML: architectural

e SRML is declarative:

e COWS: behavioural (lower level of abstraction)

 COWS its primitives explicitly model

it supports under-specification orchestration

it abstracting from how the middleware the functionalities provided by the middleware
provides its functionalities (e.g., publication, discovery, correlation)

COWS (overview)

The invoke/receive
specifies a service
and an operation

Kill-protection allow to
implement
compensation

S:= (services) (notations)
kill(k) (kill) k: (killer) labels
——JPu.u'le (invoke) €. expressions
i~y Pi*9i?W,.s; (receive-guarded choice) X: variables
s|s (parallel composition) v: values
{s[} (protection) n, p, 0: names
(e] s (delimitation) u: vars | names
icati | values

Pattern-matching -> correlating, by means of their same contents, s | vars | names
different interactions logically forming a same ‘session’

The Aim

e The implementation of those SRML models which are not underspecified in
COWS...

e ..distill minimal set of assumptions made on the middleware
e ..provides SRML with an operational semantics

e ..middleware modelled in a way that is is operational but still abstract with
respect to implementation issues with actual technologies

REPAIRSERVICE

@ :

Orchestrator
2N

!

oL

A
LX:

LocalAgenda

The implementation of a SRML module into COWS is modular

COWS

Module(123) | Middleware® | Environment®
Module(l23=Factory1.(InstanceHandler (™ | Orchestrator ? | DiscoveryHandler)

Creates different instances of a service, Triggers discovery/binding for

each equipped with one instance handler each requires-interface and
implements message correlation

Implements message correlation to support
multiple instances of the same service V@m\\ hito://rap.dsi.unifiit/cows/

. I;h
E’_ hitp://rap.dsi.unifi.it/cows/papers/SRML2COWS.pdf

http://rap.dsi.unifi.it/cows/papers/SRML2COWS.pdf
http://rap.dsi.unifi.it/cows/papers/SRML2COWS.pdf
http://rap.dsi.unifi.it/cows/papers/SRML2COWS.pdf
http://rap.dsi.unifi.it/cows/papers/SRML2COWS.pdf

Discovery Process

(1) intGA becomes true and triggers

; Middleware
the discovery of GA R (instance of ONROADREPAIR)

(2) R_GA sends GA to Broker -

RepairService
(3) Broker returns) factory
th : h / instance of REPAIRSERVICE)
- the id of the best match for GA create , e

requires handler

- information on the mapping /
between the names of GA and CR @ CR: Orchestrator

Customer

4
(4) - R_GA sends a message to the G CR

factory RepairService to create a instance handler
service instance

R_GA

GA- triggerid;). (1)
(Broker - disc!{OnRoadRepair, id;, “Garage is ...”, carUserSLAconstraints)a
| [(Xps XacceptBooking] OnRoadRepair - GAXid;, Xy, Xaccepibooking)- 1)
[idext] (xp+ create!{OnRoadRepair, id.x)
| X, « bindingInfo!(id., acceptBookingResp)
| % [Xinfo] GA « acceptBooking id;, &, Xinf,). G C R
(Xp * XacceptBooking ! (idext’ 8, xinfo) —
| [Xserviceprice] OnRoadRepair - acceptBookingResp™idexs, >4, XservicePrice)- * [Xeusts Xext ia) RepairService create™ (X ity Xext id)-
OG pieB * acceptBooking (id;, >4, XservicePrice)) lidinira] (ProvidesInt | Requiresint | Wires | Components)

l...))

Conclusion/Future Work

We provided an implementation of SRML modules into COWS

The aim was to provide SRML primitives with an operational semantics and clarify the
assumptions on the middleware

Focus on dynamic aspects, simplification of some static aspects

An editor for SRML (Eclipse plugin) has been developed which represents the SRML meta-
model as an EMF tree

Ongoing work - a graphical editor for COWS (based on GMF) with an integrated interpreter

The automation of the transformation, for example relying on the editors (by means of a
transformation between the respective meta-models) would allow SRML models to benefit from
the tools for analysis and reasoning made available by COWS:

a type system to check confidentiality properties [FSENO07], a temporal logic and a model checker to verify
functional properties [FASE08], a static analysis to establish properties of the flow of information between
services [SAS08], a stochastic extension to enable quantitative reasoning on service behaviours [ICSOC07], a
symbolic representation of the operational semantics [PLACE08], bisimulation-based observational semantics
to check interchangeability of services [submitted]

Thank you

