
From Architectural to Behavioural 
Specification of Services

FESCA 2009

Laura Bocchi (bocchi@mcs.le.ac.uk), José Luiz Fiadeiro

Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi

mailto:bocchi@mcs.le.ac.uk
mailto:bocchi@mcs.le.ac.uk


Agenda 

• Background: SENSORIA, SRML, COWS

• The aim 

• The architecture of the implementation

• An example

• Conclusion/future work



Software engineering for SOC

• The aim is to develop a novel approach to the engineering of software systems for service-
oriented overlay computers where foundational theories, techniques and methods are fully 
integrated in a pragmatic software engineering approach

Software Engineering for Service-Oriented Overlay Computers
http://www.sensoria-ist.eu/

an IST-FET Integrated Project Sept05–Aug09

• The different languages and formalisms developed in 
SENSORIA represent each a number of aspects of SOC 
from different perspectives: none of them aims to be 
“complete”

SRML

COWS

• SOC vs CBD: our view 

• There is no “system” a-priori but an evolving configuration
• Services add a layer of abstraction over a component 

infrastructure

http://www.sensoria-ist.eu
http://www.sensoria-ist.eu


SRML&COWS

• Module: a number of (different types of) nodes 
pairwise connected by edges

• Each node n has a signature sign(n) 

• Each node has a (different type of) behavioural 
interface. All behavioural interfaces are defined in 
terms of events

REPAIRSERVICE

OR:
Orchestrator

     CR:
    Customer

TT:
TowTruck

LA:
LocalAgenda

intCA

CO OT

OL

SLA

• SRML (overview)

• COWS: behavioural (lower level of abstraction)    

• COWS its primitives explicitly model

• orchestration 

• the functionalities provided by the middleware 
(e.g., publication, discovery, correlation)

• SRML: architectural   

• SRML is declarative: 

• it supports under-specification 

• it abstracting from how the middleware 
provides its functionalities



SRML&COWS

• COWS (overview)

The invoke/receive 
specifies a service 
and an operation

Pattern-matching -> correlating, by means of their same contents, 
different interactions logically forming a same ʻsessionʼ

Kill-protection allow to 
implement 
compensation

• COWS: behavioural (lower level of abstraction)    

• COWS its primitives explicitly model

• orchestration 

• the functionalities provided by the middleware 
(e.g., publication, discovery, correlation)

• SRML: architectural   

• SRML is declarative: 

• it supports under-specification 

• it abstracting from how the middleware 
provides its functionalities



The Aim

• The implementation of those SRML models which are not underspecified in 
COWS... 

• ...distill minimal set of assumptions made on the middleware

• ...provides SRML with an operational semantics 

• ...middleware modelled in a way that is is operational but still  abstract with 
respect to implementation issues with actual technologies



    

REPAIRSERVICE

OR:
Orchestrator

     CR:
    Customer

TT:
TowTruck

LA:
LocalAgenda

intCA

CO OT

OL

SLA

1a 1b

4

6

2 3

5

Architecture
• SRML

• COWS
Module(1,2,3)|Middleware(4)|Environment(5) 
Module(1,2,3)=Factory(1a).(InstanceHandler (1b)| Orchestrator (2)|DiscoveryHandler (3))

     
http://rap.dsi.unifi.it/cows/

http://rap.dsi.unifi.it/cows/papers/SRML2COWS.pdf

Creates different instances of a service, 
each equipped with one instance handler

Triggers discovery/binding for 
each requires-interface and 
implements message correlation

Implements message correlation to support 
multiple instances of the same service

• The implementation of a SRML module into COWS is modular

5

5

http://rap.dsi.unifi.it/cows/papers/SRML2COWS.pdf
http://rap.dsi.unifi.it/cows/papers/SRML2COWS.pdf
http://rap.dsi.unifi.it/cows/papers/SRML2COWS.pdf
http://rap.dsi.unifi.it/cows/papers/SRML2COWS.pdf


Discovery Process
• (1) intGA becomes true and triggers 

the discovery of GA

• (2) R_GA sends GA to Broker

• (3) Broker returns 
- the id of the best match for GA 
- information on the mapping 
between the names of GA and CR

• (4) - R_GA sends a message to the 
factory RepairService to create a 
service instance

R (instance of ONROADREPAIR)

GA:
Garage

intGA
1

2 3

G (instance of REPAIRSERVICE)

     CR:
     Customer

4

R_GA
requires handler create

57

Orchestrator

6

Orchestrator

8
G_CR

instance handler

0

RepairService
factory

Middleware

R_GA

G_CR

1

2

3

4



Conclusion/Future Work
• We provided an implementation of SRML modules into COWS

• The aim was to provide SRML primitives with an operational semantics and clarify the 
assumptions on the middleware

• Focus on dynamic aspects, simplification of some static aspects

• An editor for SRML (Eclipse plugin) has been developed which represents the SRML meta-
model as an EMF tree

• Ongoing work - a graphical editor for COWS (based on GMF) with an integrated interpreter 

• The automation of the transformation, for example relying on the editors (by means of a 
transformation between the respective meta-models)  would allow SRML models to benefit from 
the tools for analysis and reasoning made available by COWS:

• a type system to check confidentiality properties [FSEN07], a temporal logic and a model checker to verify 
functional properties [FASE08], a static analysis to establish properties of the flow of information between 
services [SAS08], a stochastic extension to enable quantitative reasoning on service behaviours [ICSOC07], a 
symbolic representation of the operational semantics [PLACE08], bisimulation-based observational semantics 
to check interchangeability of services [submitted]



Thank you


