
HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

Model-based Runtime
Verification Framework

Yuhong Zhao
Heinz Nixdorf Institute
University of Paderborn
Germany

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

2

Outline

Motivation
Model-driven Engineering
Verification and validation techniques

Model-based runtime verification framework
Problem Statement
Pipelined working principle
Model Checking Methodology
Game between Runtime Verification and System Execution

Pre-checking and post-checking
Speedup strategies

• Enrich system model with probabilities
• Enrich system model with additional information

Conclusion

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

3

Motivation

Model-driven Engineering (MDE)
Model system according to system specification
Verify system model against system specification
Synthesize system implementation (source code) from system model

System
specification

System
Model

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

4

Motivation

Model-driven Engineering (MDE)
Model system according to system specification
Verify system model against system specification
Synthesize system implementation (source code) from system model

System
specification

System
Model

System
implementation Synthesize

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

5

Motivation

Verification and Validation Techniques
Off-line Methods:

Model Checking (theorem proving)
• Check all of the system behaviors

Simulation and Testing
• Check some of the system behaviors

System
specification

System
implementation

System
ModelSynthesize

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

6

Motivation

System
specification

System
implementation

actual
state monitored

state

Synthesize

Verification and Validation Techniques
On-line Methods:

State-of-the-art runtime verification

System
Model

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

7

Motivation

System
specification

System
implementation

Implementation level model level

Model-based
Runtime Verification

Verification and Validation Techniques
On-line Methods:

State-of-the-art runtime verification
Model-based runtime verification

Consistency
Checking

System
Model

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

8

Model-based Runtime Verification Framework
Problem Statement

As service of Real-time Operating System (RTOS)
Application scenario
Consider a real-time system model M that

contains n modules: M1, M2, ..., Mn working in parallel
does reconfiguration at runtime by

case 1: M - Mi (remove an existing module Mi)
case 2: M + Mi' (add a new module Mi')

Requirements:
• Send reconfiguration request in advance to RTOS (at time instant tr)

Goal:
• Get answer before the reconfiguration is really done (at time instant t0

> tr) from runtime verification service

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

9

Model-based Runtime Verification Framework
Overview

Real-time UML Model

FSM Model Source Code

Abstract State

Concrete State

• • • • • •

Real-time OCL
Constraint

Real-time
ACTL/LTL

Büchi automaton

• • •

conform?conform?

Safety Checking
Consistency Checking

Safety Property System Model Execution Trace

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

10

cs1

cs0

cs2

Model-based Runtime Verification Framework
Basic Idea

Real-time
Application

Run-time
Verification

M
×

B¬f

Concrete
state space

Abstract
state space

Goal:
checking safety
and consistency by

looking ahead a
subspace in
system model that
covers execution
trace

cs3

• • •

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

11

Model-based Runtime Verification Framework
Pipelined Working Principle

CurrentState(s0)0

t1

Time

t2

ACTL/LTL
Model Checking

0

t1

tj+1

Yes(t1)

RTOS

ReconfigureRequest(td,⋅⋅⋅)

Real-time
Application

t2 •
•
•

•
•
•

tj-1

tj

tj+1

Yes(t2)

Yes(t1)

Yes(tj)

tj-1

tj

Unknown!

Yes!

No!

VerificationRequest(td,⋅⋅⋅)

CurrentState(s1)

CurrentState(sj-1)

CurrentState(s2)Yes(t3)

• • •

• • •

Yes(tj+2) CurrentState(sj+1)

tk

tn

= td

•
•
•

•
•
•

•
•
•

•
•
•

≤ tc?

trΔt1

Δt2

Δtj

Δtj+1

Δt1

Δt2

Δtj

Δtj+1

Δt1

Δt2

Δtj

Δtj+1

CurrentState(s0) t0

t1

t2

tk

tj-1

tj+1

tj

Suppose
Components and Protocols
between Components are
checked correct at design
phase

Implementations of the
systems conform to the
corresponding models

Properties to be checked are
ACTL and LTL formulas

Processing speed of the
verification is faster enough
than that of the application

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

12

Model-based Runtime Verification Framework

Yes(t1)

Yes(t2)

Yes(tj)

Yes!

No!

Unknown!

ACTL/LTL Model Checking

?

Kripke structure of model M Büchi Automaton of formula f

G2
M(0,t2) G2

f(0,t2)

Gk
M(0,tk) Gk

f(0,tk)

G1
M(0,t1) G1

f(0,t1)

Gj
M(0,tj) Gj

f(0,tj)

Gi
f(0,ti)

tj

t1

t2

• • •
tj-1

• • •

Gi
m(0,ti)

t1

tj

t2

tj-1

tj+1

• • •

s1

s2

sj-
1

sj

sj+1

Time

= td

•
•
•

•
•
•

≤ tc?

• • •

tj+1

tr

t0

t1

t2

tj-1

tj

tj+1

tk

Note:

1. “ ” stands for “≤”
(Simulation relation) for
ACTL Model Checking;
“ ” stands for “|=”
(Satisfaction relation)
for LTL Model Checking.

2. Gi
m(0,ti) (1 ≤ i ≤ k) denotes

the subgraph of the Kripke
structure (system model)
reachable from initial states
within Δti steps.

3. Gi
f(0,ti) (1 ≤ i ≤ k) denotes

the subgraph of the Büchi
automaton (ACTL/LTL
formula) composible with
Gi

m(0,ti).

4. td is the timing constraint
required for verification.

5. tc is the minimum time
difference between
verification and application.

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

13

Game between Runtime Verification and System
Execution: Pre-checking and Post-checking

Model-based Runtime
Verification Service

Pre-checking Post-checking

Real-time
Application

Runtime
Verification

Runtime
Verification Real-time

Application

Goal: make runtime verification in pre-checking mode for as long time
as possible in course of system execution

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

14

Game between Runtime Verification and System
Execution: Speedup Strategies

Enrich system model with probabilities

Simulation traces

Concrete state
space

Abstract state
space

• • •

p1
p2 p3

pk

• • •

• • •

trace 1 trace 2

refinement

trace

critical state

critical state

critical state

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

15

Game between Runtime Verification and System
Execution: Speedup Strategies

explore transitions
with high probabilities

switch back to
post-checking mode

Enrich system model with probabilities
Intentionally reduce state space to be explored

critical state

si

sj

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

16

Game between Runtime Verification and System
Execution: Speedup Strategies

Enrich system model with additional information

…a …b

refinement

Concrete state
space

Abstract state
space

• • •

• • •

s1 s2
a

b
• • •v1 v2

v3

v

trace 1 trace 2

s1′ s2′

trace

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

17

Conclusion

Model-driven Engineering
System specification → System model →System implementation

Verification and Validation Techniques
Off-line methods

Model-checking
• Check all of the system behaviors

Simulation and testing
• Check some of the system behaviors

On-line methods
State-of-the-art runtime verification

• System implementation → System specification
Model-based runtime verification

• System implementation → system model → system specification

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

Question?
Advice?

......

Thank You for Your Attention

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

19

Runtime invariant checking

Note:
1) Transition in system model represents 1 millisecond;
2) Platform: Linux, Pentium 4 processor 3.00 Ghz, 1 G RAM.

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

20

Runtime LTL Checking

Model: the driving philosophers
LTL formula: G(ac0 → Fgr0) ---If process 0 requests a resource it will be granted to him eventually

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601 1701 1801 1901 2001

Note:
1) Transition in system model represents 1 millisecond;
2) Platform: Linux, Pentium 4 processor 3.00 Ghz, 1 G RAM.

Real-time Application

Runtime Verification

	Model-based Runtime Verification Framework
	Outline
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Model-based Runtime Verification Framework�Problem Statement
	Model-based Runtime Verification Framework�Overview
	Model-based Runtime Verification Framework �Basic Idea
	Model-based Runtime Verification Framework�Pipelined Working Principle
	Model-based Runtime Verification Framework
	Game between Runtime Verification and System Execution: Pre-checking and Post-checking
	Game between Runtime Verification and System Execution: Speedup Strategies
	Game between Runtime Verification and System Execution: Speedup Strategies
	Game between Runtime Verification and System Execution: Speedup Strategies
	Conclusion
	Thank You for Your Attention
	Runtime invariant checking
	Runtime LTL Checking

